silver-lead system. It is thought that this dependence might help in the interpretation of the mechanisms involved.

Empirically, Q is usually obtained from a plot of log D vs 1/T, and D_0 by extrapolation of this plot. Another way of obtaining Q, used by many authors for comparison, is to calculate Q from the Dushman-Langmuir equation; ⁷

$$D = \frac{d^2Q}{N h} \exp\left(\frac{-Q}{RT}\right) \tag{7}$$

consequently,

$$D_{o} = \frac{J^{2}Q}{Nh}$$
 (8)

where N is Avogadro's number, h is Plank's constant, and d is the interatomic spacing. The two approaches agree quite well in most cases. 27 However, Van Liempt 28 points out that this agreement is no proof of equation 7 due to the insensitivity of values of Q obtained to changes as large as a factor of 10 in D_o . This objection may not be too serious in light of the statement made by Nowick 29 in defense of a similar equation by Zener "that values of D_o obtained from conventional plots of $\ln D$ vs 1/T often appear to be in error by factors as great as 10^8 ."

Braun and Van Liempt, using Lindemann's theory of melting, derived an equation relating the activation energy to the melting temperature $(T_{\rm m})$ of the solvent;

$$Q = 3b^2 R T_m \tag{9}$$

where b is a number characteristic of the solvent material, approximately equal to 2 for all materials. This equation shows fairly good agreement